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Abstract —A thorough formulation of electromagnetic wave interaction

“tith biological systems is presented. The themtadynamic process of the
microwave-induced thermoacoustic generation is clearly defined. Couplings

of the acoustic and thermal energies to the surrounding medium are

included through consideration of discontinuities of therrnadynanticaf varia-
bles and microwave exposure. Contrary to prior analyses, it is shown that

acoustic waves may be generated by pulsed microwaves, even in the
absence of irthomogeneity of microwave absorption, owing to discontinui-
ties of thermodynaruicaf variables and microwave exposure conditions

across the interface. Generaf equations for the thermoacoustic waves are

derived, and the validity of the first-order linear approximation is estimated
in terms of its percentage error. For a system with water as the absmbhg

dielectric interfacing with air of 1 atmosphere pressure, the first-order

approximation becomes invtild for a peak specific absorption rate greater
than 13 kW/gm.
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I. INTRODUCTION

T HERMOACOUSTIC WAVES generated by pulsed
microwaves have been cited as a mechanism for mi-

crowave hearing [1]–[6]. This effect has been experimen-
tally shown to require an intact cochlea and 8th cranial
nerve with a perceptional threshold near that of bone
conduction. These facts imply that acoustic waves are
transduced in the animal’s skull by pulsed microwaves,
then transmitted to the Organ of Corti by bone conduc-
tion. More recently, it has been demonstrated that acoustic
waves are transduced in dielectric objects simulating the
ocular lens when exposed to pulsed microwaves [7]. The
putative effect has also been cited as the operant mecha-
nism for cellular damage in studies of the murine ocular
lens in uitro [8]. Several theories on the microwave auditory
mechanism have been reviewed and compared by Lin [6].
Among them, it was found that only the thermoplastic
mechanism could produce elastic waves of magnitude large
enough to explain the experimental observations.

0018-9480/84/0800-0835 $01.00 01984 :[EEE



836 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. MTT-32, NO. 8, AUGUST1984

The theoretical derivation of the thermoplastic mecha-
nism was based on the linear elastic equation with an

external excitation derived from the thermal expansion that
was produced by the absorption of incident microwave
energy. The supposition was that an inhomogeneous micro-
wave distribution in a dielectric body produced an inhomo-
geneous thermal expansion and thereby caused a mechani-
cal stress. The pressure from the elastic excitation was then
assumed to be the product of the spatial variation of the
microwave energy and some thermal coefficients including
the compressibility, thermal expansion coefficient, and
specific heat. This approach fails to consider the proper
balance of the distribution of the absorbed microwave
energy among the internal thermal energies and the bulk
kinetic energy. Indeed, since the thermodynamic process of
the microwave acoustic effect was not formally identified,
all thermal coefficients are not adequately defined. Fur-
thermore, until now all theoretical analyses of the acoustic
wave generation have been limited to either isolated sys-
tems or completely constrained systems [3]-[6], [9], both of
which exclude the possibility of coupling to the external
medium. If these conditions were taken verbatim, con-
firmatory experimental measurements would be difficult, if
not impossible.

In this paper, a thorough formulation of the microwave-
induced thermoacoustic effect in dielectrics and its cou-
pling to external medium, based on thermodynamical con-
siderations, is presented. Couplings of the acoustic and
thermal energies to the surrounding medium are included
through discontinuities of the thermodynamical variables
and conditions of microwave exposure. Results of these
couplings may provide a method for experimental evalua-
tion of the microwave-generated pressure waves in small
dielectric objects for which direct measurement is difficult.
Solutions are derived for the first-order linear approxima-
tion. The percentage error is calculated, and the upper limit
of the specific absorption rate consistent with its validity is
also estimated. The ratio of radiated acoustic energy to
absorbed microwave energy is also derived for a one-di-
mensional system,

H. THE FORMULATION

In this section, we shall present a general formulation of
microwave-induced thermoacoustic effect. The objective is
to derive the governing equations for the thermodynamical
and mechanical variables, which include the mass density p
or the specific volume F’= I/p, the pressure p, or, for an
anisotropic medium, the stress tensor p,,, the thermody-
namic internal energy U1, the bulk kinetic energy U~, which
pertains to the acoustic waves, the bulk velocity 0, the
absolute temperature T, and the microwave specific ab-
sorption rate (SAR, the rate of energy absorption per unit
mass] P, All these quantities depend on time t as well as
on space X All thermodynamic extensive quantities are
defined as per-mass quantities. We shall show that the
thermoacoustic effect may essentially be described by four
equations: the conservation of mass, the conservation of

momentum, the conservation of energy, and the thermody-
namic equation of state.

When a dielectric system is exposed to microwave radia-
tion, microwave energy is absorbed into the dielectric
through the work of the electric field on the electric polari-
zation: 8 dfl. By means of molecular collisions, the energy
is then partially converted into the internal energy U1 and
partially into the bulk kinetic energy UK via thermal ex-
pansion and other elastic vibrations, The process is com-
plex and irreversible; however, we shall assume that the
time domain which concerns us is much greater than the
time it takes to reach a quasi-steady state and that every
microscopically small part of the system is in local equi-
librium such that thermodynamic variables, such as tem-
perature, pressure, density, etc., may be defined. Then,
from the first law of thermodynamics, which states that
the net heat added to the system is equal to the sum of the
work done by the system 8w, and the increase in the
internal and bulk energies [10], one has

8Q=d(U1+VK)+8w–&d$ (1)

where d represents a perfect differential and ~ an imper-
fect differential. Q is the total heat input which includes
both conductive and convective heat flows, and & and #
are, respectively, the electric field and electric polarization.
Note that we have separated the energy density into two
terms: the first term U1 is the internal thermal energy
density which depends on p and p, and the second term
UK, which is equal to U2/2, is the bulk kinetic energy
density; the velocity d is the bulk velocity of the acoustic
vibration, which is to be distinguished from molecular
thermal motions.

The time domain of our interest is the width of the
microwave pulse, which is in the order of microseconds
and is too short for any heat conduction and convective
flow to take place, Therefore, 8Q in (1) maybe ignored. As
to the last term on the right-hand side, the time cycle of the
electric field is in the range of subnanoseconds, which is
much shorter than the time domain of our concern. There-
fore, we may average both d and ~ over the microwave
cycle. The resulting L?d~ represents the microwave energy
absorbed by the dielectric, which we shall denote by 8QP.
Thus, (1) may be rewritten as

8QP=d(U1+UK)+&v. (2)

In order to convert (2) into a differential equation with
respect to space and time, we present a more general form
of the equation of conservation. Let g be a thermodynamic
extensive quantity and Sg be the rate of production of g,
which may be due to internal production or external input,
then the equation of conservation for g is

a,g+v”(gd)=sg (3)

where the first term on the left-hand side represents the
rate of increase of g per unit volume, and the second term
is the rate of outgoing flow of g from a unit volume. In
terms of the convective derivative df = d~ + 8. v, the above
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equation may also be written as

d,g+gv. d=sg. (4)

Let g be the den~ity p, then (4) gives the equation of
continuity

d,p+pV. ti=O. (5)

On the other hand, if g is taken to be the momentum
density pu,, the corresponding Sg is the force density,
which is given by – d,pij (d, - i?/i?xJ ), (4) then becomes

d,(pu, )+pu,v”fl=-d,p,j

which is essentially a general form of Newton’s second law.
Note that we have adopted the summation convention, i.e.,
repeated indices are to be summed through the degrees of
freedom. With the help of (5), the above equation may also
be written as

p dt vi + alpij =0 (6)

which is Euler’s equation [11]. Similarly, if g is taken to be
the energy density P(UI + UK), the corresponding Sg is the
microwave power absorption per unit volume pl’(i, t)plus
the rate of work by the stress tensor, which is – v. ( d” fl).

Again, using (5), the conservation law for energy reads

pd, (U1+UK) =–v”(i7”})+pP.

Since UK= 02/2, by (6), p d,UK + vi dj p,, = O, the above
equation may then be written as

pd,ur= –plJ d] vi + pP. (7)

Thus, the first term on the right-hand side of the above
equation is the part of the mechanical work done to the
system that contributes to the thermal internal energy. This
fact will be used later to derive the expression of the
internal energy in terms of other thermodynamical vari-
ables.

Equations (5)–(7) all together contain four unknowns,
viz., p, 3, ~, and U1. One more equation is needed to
complete the system, which will be furnished by the ther-
modynamic equation of state

ul=u(p, F).

Here, we have ignored the dependency of U1 on the electric
polarization P since the cycle of the microwave is much
shorter than the time domain of our interest, the micro-
wave pulse width, which is in the order of microseconds.
As a thermodynamical system, the dielectric has two inde-
pendent thermodynamic variables, which may be any pair
among the variables p, T, }, and U, and all other variables
may be considered as functions of the pair. Since p and I
are the variables in (5)–(7), they are selected as the inde-
pendent variables. A differential of U1 maybe expressed as

dU1 = ( dPUI) p,, dp + ( ~P,,@ ~dP,~c (8)

We would like to express the partial derivatives of U{ with
respect to p and pi, in terms of known empirical quantities
such as specific heat and compressibility. To do this, we

use the Jacobian method of relating one partial derivative
to another. In the following derivation, we shall first drop
the indices i, j of the stress tensor pi,, and later restore
them after the result is derived. The Jacobian J( u, U)x,~ is
defined as

((ax~), (O’dx
Y(u, v)x, Y=det

)(dxv)y (O.Ox “ .

It is straightforward to show that the ratio of J(u, U)X,~ to

J(r, s)x ~ is equal to J(u, u),,, independent of which pair
of ( x, y’) is used for differenti’ation. Thus, we shall drop the
subscripts whenever a ratio of Jacobians is concerned. It
may also be easilly shown that Y(u, u),, ~ = – .J(U,U)X,~=

J(L ~)y, x! and J(u, v)/Y(x, v)= (OXu),. Using these
identities, one may then derive from (8) the following
equation:

dUI=(dPUI)P dp+(dPU~)Pdp

‘(”iddp+ J(UI>P) dp——
J(p, p) J(p, p)

J(UI, P)/J(~, P) dp+ J(W P)/J(~, P) dp

= J(p, p)/J(T, p) J(p, p)\J(T, p)

J(%P)/J(T,P) J(T, p)/J(p, T) ~p_—

‘C:?;[;;;;;:’J(P’”
(9)

where CO and CP are the specific heat (per mass) at
constant volume and constant pressure, respectively, & is
the isobaric thermal expansion coefficient, and KT the
isothermal compressibility. In deriving the last equality of
the above equation, the following relationships have also
been used:

& = (l/v)(dTv)p = (1/~) J(~, P)/J(T, P)

KT= –(l/V)(dPV)T= –(1/v)J(P’, ‘)/J(i, ~]

and, since from the first law of thermodynamics, 6Q = dU1

+ pdV= dU1 + pd(l/p)

Co= (d#I1)P = J(UI, P)/J(’, P)

Cp = (aTul)P+ [Mph)],
=J(U1, P)/J(T, P)-(P/P2)J(P, P)/J(~, P).

It is straightforward to generalize the above result to
include the stress tensor I. Including the indices i, j of the
stress tensor, (9) takes the form

dU, = [– C,/(pP,)+ (1/P2)plj a,ui/v” ~] dp

+(C./~P)(K~)ij@~l (10)

where Cu and flP are as expressed above, except that now d
must also be included in the independent variables and be
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kept constant in the partial derivatives; CP is given by

CP= (d~U~)p,j+ [(dT)(Pij ‘J”l/(~v”ti))]p,ti

=J(ul>P)/J(T> P)–[(1/P2)P1,~J~,/v”~]

“.l(p, p)/J(T, p)
and ( ~~)i~ is the compressibility tensor defined as

(KT),, = -(l/v) ((?v/dp,,)T

= -(1/v)J(v, T)/J(p,,, T).

In deriving the above results, we have used the generalized
first law of thermodynamics for mechanically anisotropic
media

~Q = dUI +( Pi, d, Ui/V”d) dV.

To understand the above equation, we consider 8Q as the
total heat input to a material element of unit mass during
time dt, during which the total energy is increased by dU.

The total work done by the element is equal to v o(d”}) dt

times the volume, which is l/p. On the other hand, from
(5), the increment in volume during dt is dV = d(l/p) =

(1/p)v. ddt. Therefore, the work done associated with a
volume increment d~ is [v” ( ~- P)/ v” 0] dV, which may

be separated into two terms: (Pzj d, ZL/ V” ~) dV +
(u, dJp,,/ v c8) dV, where the second term contributes to
the bulk kinetic energy UK, while the first term contributes
to the thermodynamical internal energy UT. It is the inter-
nal energy to which the thermodynamical variables such as
the compressibility and specific heat are related.

It is remarked that we have ignored the internal energy
associated with the anisotropicity of the strain tensor,
simply to reduce complexity. In other words, we have
assumed that the energy associated with different direc-
tions of strain are approximately equal, and, therefore, the
strain tensor may be represented by the increment in the
specific volume, or equivalently, the increment in the den-
sity, as it is expressed in the first term in the right-hand
side of (10).

To summarize, we list the four equations of the system,
viz. (5)–(7) and (10) as follows:

drp+pv. i7=0 (11)

pdlv, + 8Jpi1 = O (12)

P,] dlv, + pdlU1 = PP (13)

d,f.1 = [ – cP/(P&)+ (VP2)AJ d#,/V” ~] d,p

+(%@P)(~~)tjd~p,J. (14)

The convective derivative dt = tlr + d. v may be cumber-
some. It is possible to transfer the convective derivative
into the simple derivative ~f by the transformation from
the Eulerian specification to the Lagrangian specification
[11]. The former refers to the specification of using the
space vector Z to describe a material element, whereas the
latter attaches a fix vector to each material element. So, if
we specify each dielectric element by its initial value of 1,
denoted by ~, ~ = X(t = O), then a description of, say,

pressure, may be expressed by p (i, t), referring to the
pressure at time t and space point 2, or expressed by p (~),

referring to the pressure at time t and the space point
occupied by the element which was at the space point ~
when t = O. Denote by ii( ~, t) the displacement of the
@element from time O to time t, then ,Z(~, t) = ~ + Z(@,t).
The velocity 0(2, t), or O(?, t), is defined as ( dii/13i)i,
from which one obtains, for any function ~(~, t) or ~(i?, t)

(~,f); =(~,f), +(~”v.)f

which is exactly the convective derivative of ~. Since d/ 6’x1

= ( dq,/dxz) d/dq, (using the summation convention) and
u, = xl – q,, one has

(@/dx,)(d,k + d@9k) = ~lj.

Thus, denoting by A the matrix A,j = C$z,+ duj /dqz, one
has the following identities:

(A-’)lJ = dqj/dxi

6’/i3x, = (A-’),~ d/dq,.

With these identities, the transformation to the Lagrangian
specification brings (11)–(14) into the following form:

(~tf)~=(~,f)i+(~”v.)f

f3#+p(A-’)1ja, u,=o (15)

pi@l+(A-l)@~p, j=O (16)

pdrur=P,l (A-l) jkdkul=pP(z, t) (17)

a,f?I = [ – q/( PPp)+(VP2)PIJajw”v” o]~,P

+(c. /Bp)(@zJ~f P[J (18)

where d,= (d/iIt)@and 8, = (d/8q1)t.

Equation (15) can be immediately integrated without
involving the other three equations. It is straightforward to
verify that the following is its solution:

~(?, t)=p(@, O)/det(~) (19)

where det ( A) is the determinant of the matrix A, Equa-
tions (18) and (19) may be substituted into (16) and (17) to
eliminate Ur, then we are left with (16) and (17) with two
unknowns, viz., Z and pl~ (note that O= dt ii), to solve.
However, they are nonlinear equations, especially the ther-
modynamical variables CO, CP, BP, and ~= may be com-
plicated functions of p and p. In the next section, we shall
further simplify these equations by making the first-order
linear approximation. It is remarked here that, instead of
using (14) or (18), one may substitute it by another thermo-
dynamic equation of state, which maybe any interrelation-
ship among the variables. The principal content of most
biological dielectrics is water, for which many empirical
equations of state are available [12].

111. THE LINEAR APPROXIMATION

In this section, we consider the first-order approximation

and reduce the nonlinear equations (15)–(1 8) to linear

ones. The order of magnitude here refers to the variation of

all the quantities, including the displacement 2, ~ =

atil, p, p, and all thermodynamical coefficients, from their
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.
initial values. We shall assume that initially the system is in
an equilibrium state with density PO,pressure PO, tempera-
ture To, and ii= 6= O; in general, PO,PO, and TOmay still
depend on the space vector ~. The quantities ii and d are
therefore first-order quantities. In. the first-order approxi-
mation, the matrix A in (15)–(17) may then be taken to be
unity. Note also that, to the first order, there is no dif-
ference between the Eulerian specification and the
Lagrangian specificaticm~ so one may use either the set of
equations (11)–(14) or the set (~5)–(18). Substituting (18)
for the first term in (17), (15)–(17) then become

b’lp+pv’$=o (20)
,.

,. p 6’*V,‘+ d,pij = o (21)

‘(Cp/;p)8tP+(pC./~P)(K~),, ~*P,j=Pp (22)

where; in obtaining the last equation, (20) has been used to
cancel two terms involving d~u,, Equations (20) and (21)
may be used to eliminate ti and yield

‘t[(l/P)d~P] – al[(l/P)djPiJ] = 0. (23)

Finally, (22) and (23) may work together to eliminate p to
yield the equation for p,,

~t[(Cu/cP)(KT)2jatpif1
–‘i [(l/P) ajPlj ] = &[(Bp/Cp)p] . (24)

Note that, apart from the assumption that the matrix A
(which was defined in the paragraph before (15)) is unity,
we have not used other first-order approximations to de-
rive (20)–(24). In general, if the strain tensor di Uj is
isotropic so the matrix A is a multiple of unity, then all the
above equations are derivable from (15)–(18), even in
nonlinear cases, except for a strain factor A -1 = ( p/pO )1/3,

which must be multiplied by the second terms of (20) and
(21) and other equations derived therefrom. It is also
worthwhile noting that, for isotropic media, one has the
following relationship between p and p, without any ap-
proximation:

- (CP/~P) ~,P + (P%/@P) ~rP = PP. (25)

This result is obtained from (17) by substituting, in its
left-hand side, the first term with the expression from (18),
and the second term with (p/p) ~tp obtained from (15).

In the first-order approximation, Ofpi, and iljpij are the
first-order terms, so one may approximate the factors

(l/P), (c”/CP), (~p/CP), ~d (KT)l, in (24) by their re-
spective equilibrium values to yield the linear wave equa-
tion for the stress tensor p,,

[(@.\cP)(K~)ij]~ a;PiJ - ai a,Pij = (P&/cp)o w

(26)

where [ -” “ ]0 denotes that the quantity inside the brackets
is evaluated at its equilibrium value. In the principal axis of
a mechanically anisotropic dielectric, p, j is diagonal and,
from its definition described in the last section, so is (K~)lj.
Then, the above equation gives the wave equation for the

stress in each principal axis, with the wave velocity Cf=

[CP/(PGiKT)z)]~12 in the ith principal axis.
For mechanically isotropic systems, (20)-(22) may iilso

be simplified to obtain linear wave equations for alp, p,

and d. They are, with c denoting [CP/(PCU KT)]~12, the
acoustic wave velocity in the dielectric

a;(atp)-&v2(atp) - [C*P13D/CP]oVzP (27)

a;p - C2V2P = [PC2~P/CP]o a,p (28)

a;o– C2V*U= – [C*BP/CP]o VP. (29)

Equation (28) comes directly from (26), from which one
obtains (27) with the help of (25). As to the equation for 0,
it is derived from (21) and (28) with the assumption that 8
and P vanish initially. Equation (27) is similar to what has
been suggested by other authors [3]-[6], [9], except that
here we have all the thermodynamical quantities well de-
fined. It is also interesting to note that, as one can see flrom
these equations, acoustic waves are generated either by an
inhomogeneity or temporal variation of the product of the
microwave specific absorption rate and some thermody-
rytmical variables. The inhomogeneity or the temporal vari-
ation may be intrinsic in the microwave source or the
dielectric absorption, or may be simply due to some dis-
continuities in the thermodynamical variables. As we shall
see in the next section, acoustic waves are generated in
dielectrics even when the absorption of microwave pulses is
spatially homogeneous, which is generally the case for
small dielectric objects, such as ocular lenses. It is also
remarked that the isotropic assumption may be an over
simplification for biological tissues which are generally
anisotropic thermally, as well as elastically, especially for
tissues composed of cells with a large aspect ratio, which is
the case for ocular lenses.

Equations (27)–(29) are the first-order thermoplastic
wave equations for isotropic media without viscous damp-
ing under microwave radiation. These equations must. be
supported by the respective boundary conditions, which
are implicated in (20)–(22). To extract these boundary
conditions for a system with specific interface that sep-
arates one medium from another, we first integrate lboth
sides of (20) across a thin layer of the boundary surface
and, by Stoke’s theorem, obtain the boundary condition
for i?” 0, where i? is a unit vector normal to the boundary
surface. With this condition, (21) then gives the condition
for (1/p)fi” vp. Similarly, integrating both sides of (21)
across the surface yields the condition for p, which, to-
gether with the condition for (1/p)i3. vp and the relation-
ship expressed by (25), gives the boundary conditions for
a,p. Finally, expressing v” d in terms of a,p with the help
of (20), the boundary condition for atp gives a condition
for vs 0. Listed below are these boundary conditions.

1) For p, the following two quantities must be continu-
ous:

cz[atp+(pPP/Cp)~]

and C2ft o [(l/p) a,VP + (BP/CP) vp]. (30)
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2) For p, the following two quantities must be continu-
ous :

p and (1/P) fi”vp. (31)

3) For d, the following twci quantities must be continu-
ous :

fi. dandc2p[V” 6-(j3P/CP)P]. (32)

With these boundary conditions, solution of the above
wave equations is mathematically straightforward. In the
next section, we shall consider a one-dimensional case and
obtain some numerical results for the microwave-induced
thermoacoustic effect in water, which is the main dielectric
in biological materials.

IV. THE ONE-DIMENSIONAL CASE

To illustrate the implications of the formulation de-
scribed in the last two sections, we consider a dielectric
system that has only one degree of freedom in mechanical
vibration, such as water in a solid tube which is closed at
one end and open to the atmospheric pressure at the other
end. Instead of q, we shall use x to denote the spatial
coordinate in the Lagrangian specification, so x is the
position where the concerned material element is located at
time t = O. For a one-dimensional system, (19) gives P(X, t)

= Po(x)/A(x, t), where A(x, t) = OXU,U(X, t) is the dis-
placement of the material element, and PO(X)= p(.x, O)
describes the initial density of the system; note that POmay
be x-dependent. Replacing A-1 by p/po, (15)-(17) then
become

podfp + P%U = O (33)

Po~tu+~xP=o (34)

Poa,uI+ P~xu=Pop(x, t). (35)

Equation (18) may then be used to substitute for the first
term on the left-hand side of (35). Upon multiplying these
equations by suitable factors and differentiating both sides
with respect to t or x, then subtracting one equation from
another, they may be decoupled to yield the equations for
the variables p, p, and u, respectively. Boundary condi-
tions may also be obtained from similar considerations, as
we did in the previous section. Below we list the results.

1) The equation and boundary conditions for dt(Po/P)

are

[ ~..P;lax(Pcp/(Poc.~T))– ~:] ~,(Po/P)

= ~tp; l@P/(QcT)I’) (36)

with the following two quantities continuous across the
boundary:

[(pcP/(~oc.K~))~~(~o/p)-(~P/(c.KT))~l
and

(vPo)%[(PqJ’(Po QT))uPo/P)-(&wJ %))p] ~

(37)

2) The equation and boundary conditions for p are

[~xP;l~x – ~t(POCOKT/(PCP) )~t] P(X> f)

= - ar(Po@J’(Pq)I’)

(38)

with the following two quantities continuous across the
boundary:

p(x, t) and p~18Xp(.x, t). (39)

3) The equation and boundary conditions for u(x, t) are

[L(PqJ(PoQ%))L - Pod;] U(X> t)

= ~.y(Ppm,)+’) (40)

with the following two quantities continuous across the
boundary:

u(x, t) and (1/poCuKT)(pCP6’xu – POPPP). (41)

The above equations are exact without any approximation;
note also that all thermodynamical coefficients depend, in
general, on density and pressure and are, therefore, space
and time dependent.

In the first-order approximation, the above equations
reduce to common linear wave equations; they are given by
(27)-(29) with v replaced by ilX. To illustrate the implica-
tions of these equations and their respective boundary
conditions, we consider a thin solid tube of arbitrary shape
in the cross section filled with a dielectric liquid to height 1,

with one end of the tube closed and the other end open to
one atmosphere pressure of air. Let A denote the cross
section of the tube and x denote the position of a liquid
element along the length of the tube; the closed end of the
tube is taken to be x = O and the open end x =1. A
microwave pulse of duration ~ is incide~t from the side
perpendicular to the axis of the tube. The tube is assumed
to be thin enough with respect to the microwave wave-
length that the induced electric field is uniform throughout
the cross section of the tube. It is also assumed that the
microwave absorption by the liquid exhibits no spatial
variation along the axis of the tube. Therefore, the system
is one-dimensional and the specific absorption rate (SAR),
P(t), is independent of x. We shall calculate the total
acoustic energy coupled to the air per unit microwave
energy absorption by the liquid. For this purpose, we need
only to obtain the solution for U. With the configuration
described above, the boundary conditions are, from (32)

Ul(o, t)=o, axul(o, t)=o (42)

ul(l, t)=u2(l, t) (43)

and

Cho[im(x = z>t)-(kycp),w)]

= c;p20dxu2(x = 1, t)

where the subscripts 1 and 2 label, respectively, the dielec-
tric liquid and the air, and CI,2 denotes the corresponding

value of ( CP/( PC*KT))l’2 in either medium, which is the
velocity of the acoustic wave in the medium.
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It is more convenient to work in the frequency space
using the Fourier transformation. The Fourier transforma-
tion between any function g(t) and its counterpart g(u) is
defined as

g(t) =(27r) -’”Jmd~)e-i”t~~ (44

g(o) = (27r) -“’J;m ( )g t .“’” dt
—w

(45)

where, since there will be no ambiguity, the same notation
is used for the function in either frequency or time. Note
also that the frequency u refers to the acoustic frequency,
which is to be distinguished from the microwave carrier
frequency. If P(t),the SAR, is equal to f’Oduring the pulse
width ~, then, in the frequency space, it is given by

I’(u) = – PO(27r)l’2[1– e’@’] /[2ni(~ – ZO)] (46)

where – ZOin the denominator means that the singularity
is immediately below the real axis of the complex ~-plane.
The solutions for ,the velocity in both media are Qven by

()Ul(x, ti) _ p(@) (@p/qJ1
V2(X,(A)) – @–iO Cos(kll)– itm+sin(kll)

“(

sin(klx)

)
(47)

sin(kll)exp[ik2(x – 1)]

where k, = u/c,, the acoustic wavenumber in either
medium, ‘ad t’an’~ = ( pc)’ /( pc)l, the ratio of the acoustic

impedances of the air to the liquid.
The coupling of the energy from the liquid to the air

may be calculated easily using the above result. Noting
that the pressure in either side of the interface is equal,
owing to the first boundary condition in (39), at any time
dt, the work done by the liquid to the air per unit surface
of the interface is plul dt. Since VI(X, t) is a first-order
quantity, so, in the first-order approximation of plul dt,

one may replace PI by p., the initial equilibrium atmo-
spheric pressure. Thus, the total acoustic energy coupled
into the air induced by the absorption of a microwave
pulse by the liquid is

where A is the area of the cross section of the tube. From
the Fourier transformation (45), the integral f!!~vl(l, t)dt

is equal to (277)1/2 times the value of Ul( 1,u) evaluated at
a = O, which may be easily obtained from (47). Thus, the

above equation gives

Eti, = (2r)1’2Mpo(PP/Cp) lP(a = 0).

On the other hand, the total microwave energy absorption
by the liquid is

E,b,=L4~w P(t) dt = (27r)1’2L4P#’(U= O).
–w

Comparing the above two equations, one obtains the total
acoustic energy coupled to the air induced by the absorp-
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tion of a unit microwave energy by the liquid

~air = Eti,\Eabs = ~O(BP/’(@)lo (48)

It is interesting to note that the coupling efficiency of the
acoustic energy to a nonabsorbing medium due to the
absorption of a microwave pulse by a liquid is proportional
to the pressure in the nonabsorbing medium and, apart
from that, is independent of its other thermodynamic
properties. It is also independent of the microwave pulse
width, so that total acoustic energy coupled to the air is
proportional to the total microwave absorption cross sec-
tion. This is simply due to the linear approximation. Note
also that the coupling efficiency calculated above does not
tell the coupling efficiency of the microwave energy ab-
sorption to the acoustic energy generated in the liquid,
which may be calculated using the same approach through
the solutions for pl(x, t) and Ul(x, 1). Although previous
studies have calculated the coupling of microwave to elastic
wave in the absorbing medium [1], [2], they are limited to
either a totally constrained or totally isolated body without
coupling to the surrounding medium, and are also based
on the simplified assumption of the temperature-induced
stress due to inhomogeneous microwave absorption in the
dielectric, which failed to consider the proper distribution
of the absorbed energy between the internal energy and the
bulk kinetic energy.

The pressure waves in both media may also be calculated
using the same approach. For p, the boundary conditions
are, from (31)

dxpl(x=o,t)=o

Pl(~>t)=P2(~!t)

and

(l/Plo)~xPl(~= z, t) = (Vh)dxp’(x = 1, t).

In the frequency domain, the solutions for the pressures
are

[

cos(klx)
. . 1–1(49)

cos(kll)– itan~sin(kll)

tan~sin(kll)exp [ik2(x – z)] ~50)

cos(kll)– itan@sin(kIl) “

To obtain the pressures in the time domain, we perform the
Fourier transformation on the above results and employ
the contour integration in the complex u-plane. The results
are summations of the time-series of the form exp (is. t),

with a. being the zeros of the factor [COS( ul/cl) -
i tan@ sin ( til/cI )], corresponding to the poles of P, (x, ~).

A straightforward analysis of this factor shows that these
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poles are located at the following points in the u-plane:

un=(cl/2/)(nr–ire) (51)

where n is any odd number if tan $ is smaller than 1, and
any even number if it is greater than one, and r. is the
solution of the equation coth (r. ) + ( – I)”csch (rO) = tan +.
The pressure waves in the time domain are then

n = odd integers if tan @<1
pl(~,~)=x n = even integers if tan @>1

(52)

(

n = odd integers if tan @<1
P*(%~)=x

n = even integers if tan @>1 )

()PPPC3 f’(%)
–ifi ~

[ W’)]
—tan(2@)exp iu

plan

(53)

where, for @> rr/4, [COS(2+)] 1/2 is taken to be positive
imaginary.

For the liquid-air system, only poles with an odd value
of n exist and, since tan@ is about 3 X 10-4, r. is negligi-
bly small. Note that the amplitudes of the pressure waves
are linear in the peak SAR. However, due to the depen-
dence on the poles u., they are not linear in the total
absorbed energy, which is in contrast to the coupling
efficiency TIti,, For each frequency component u., the
corresponding amplitude exhibits some resonance phenom-
ena according to the value of the pulse width. For the
liquid–air system, the fundamental acoustic frequency is
approximately c1/(41), corresponding to a quarter-wave in
the length of the liquid, for which the resonance values of
the pulse width are given by odd-integer muhiples of
21/cl. Similar resonance behavior has also been derived
previously for totally constrained or totally isolated sys-
tems [6].

V. REMARKSAND DISCUSSIONS

A thorough thermodynarnical formulation of a micro-
wave-induced thermoacoustic effect has been presented. It
is shown that acoustic waves are generated if there is any
discontinuity, either spatial or temporal, in the radiation
density, the absorption coefficient, or the thermodynamic
variables such as the mass density p, the isobaric or iso-
volumetric specific heat, Cp and CO, respectively, the iso-
thermal compressibility ~~, or the isobaric thermal expan-
sion coefficient /3p. Therefore, even for a small biological
subject, such as an eye lens, in which the microwave power
deposit is practically uniform, acoustic waves can still be
generated by the microwave absorption.

Coupling of the acoustic energy from a microwave ab-
sorbing medium to a nonabsorbing medium is also for-
mulated through the thermodynamic equations and the
boundary conditions. Since direct measurement in small
biological objects is difficult, these results may be useful

!-

for the evaluation of the pressure waves inside small bio-
logical objects by measuring the pressure waves (or other
thermodynamical quantities) in the surrounding medium.
The result of the linear approximation indicates that the
percentage of the absorbed microwave energy being cou-
pled to a nonabsorbing medium is, apart from its pressure
in the equilibrium state, independent of the thermody-
namic properties of the nonabsorbing medium. Taking the
dielectric liquid to be water, then BP= 2.8X 10 ““C- 1,
Cp = 4.186 X107 erg/gm-°C, and p =1 gm/cm3. With the
equilibrium pressure of the air PO being 1 atm, which is
1.01 X 106 dyne/cm2, then (48) gives qti, = 6.7 X 10-6. This
also gives the lower limit of the conversion efficiency of the
microwave energy to acoustic energy in the absorbing
liquid, since part of the generated acoustic energy in the
liquid is converted into thermal energy through tiscosity
and conducted away to the surrounding medium.

The formulation indicates that the microwave-induced
thermoacoustic effect is, in general, nonlinear. At low
radiation density, one may make the linear approximation
by ignoring all second-order and higher order terms. It is
worthwhile to evaluate the validity of the linear approxi-
mation. This can be done by calculating the generated
pressure wave and comparing it to the initial equilibrium
value. Taking the fundamental frequency component in
(52), the corresponding amplitude for pl(x, t) is equal to,
for a resonance pulse width, (81/7r ‘)(c~’ /CP)lPo (assum-
ing a negligible value of tan+, which is valid for the
liquid-air system). With a l-cm length of water in the tube
being the dielectric liquid and with air of 1 atm at the open
end, a peak SAR of PO= 24 kW/gm results in a pressure
wave of amplitude equal to 1.82x105 dynes/cm2 in the
dielectric liquid, which is 18 percent of the initial equi-
librium pressure (1 atm). Since, in making the linear ap-
proximation, the factor ~p/(pCp) in the right-hand side of
(38) has been assumed constant, an 18 percent change in
the pressure produces approximately equal percentage
change in l/p, and therefore produces at least so much
error by making the linear approximation; the error is
indeed higher if the variations of ~P and Cp with respect to
pressure are also accounted for. Furthermore, in making
the above estimate, we have only included the fundamental
frequency of the pressure wave; the total pressure wave
could be much higher. Taking 10-percent error as the
maximum tolerable level, this implies that the peak SAR of
13 kW/gm is about the upper limit for the validity of the
first-order approximation, beyond which a nonlinear ap-
proach must be taken.
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